
CS448f: Image Processing For 
Photography and Vision

Wavelets and Compression



ImageStack Gotchas

• Image and Windows are pointer classes

• What’s wrong with this code?

Image sharp = Load::apply(“foo.jpg”);

Image blurry = foo;

FastBlur::apply(blurry, 0, 5, 5);

Subtract::apply(sharp, blurry);



ImageStack Gotchas

• Image and Windows are pointer classes

• What’s wrong with this code?

Image sharp = Load::apply(“foo.jpg”);

Image blurry = foo.copy();

FastBlur::apply(blurry, 0, 5, 5);

Subtract::apply(sharp, blurry);



ImageStack Gotchas

• Images own memory (via reference counting), 
Windows do not.

• What’s wrong with this code?

class Foo {
public:
Foo(Window im) {

Image temp(im);
... do some processing on temp ...
patch = temp;

};
Window patch;

};



ImageStack Gotchas

• Images own memory (via reference counting), 
Windows do not.

• What’s wrong with this code?

class Foo {
public:
Foo(Window im) {

Image temp(im);
... do some processing on temp ...
patch = temp;

};
Image patch;

};



Using Windows Wisely

float sig = 2;
Image pyramid = Upsample::apply(gray, 10, 1, 1); 

// pyramid now contains 10 copies of the input 
for(int i = 1; i < 10; i++) { 
Window level(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height); 
FastBlur::apply(level, 0, sig, sig); 
sig *= 1.6; 

} 
// 'pyramid' now contains a Gaussian pyramid 

for(int i = 0; i < 9; i++) { 
Window thisLevel(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height); 
Window nextLevel(pyramid, i+1, 0, 0, 1, pyramid.width, pyramid.height); 
Subtract::apply(thisLevel, nextLevel); 
} 
// ‘pyramid’ now contains a Laplacian pyramid
// (except for the downsampling)



The only time memory gets allocated

float sig = 2;
Image pyramid = Upsample::apply(gray, 10, 1, 1); 

// pyramid now contains 10 copies of the input 
for(int i = 1; i < 10; i++) { 
Window level(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height); 
FastBlur::apply(level, 0, sig, sig); 
sig *= 1.6; 

} 
// 'pyramid' now contains a Gaussian pyramid 

for(int i = 0; i < 9; i++) { 
Window thisLevel(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height); 
Window nextLevel(pyramid, i+1, 0, 0, 1, pyramid.width, pyramid.height); 
Subtract::apply(thisLevel, nextLevel); 
} 
// ‘pyramid’ now contains a Laplacian pyramid
// (except for the downsampling)



Select each layer and blur it

float sig = 2;
Image pyramid = Upsample::apply(gray, 10, 1, 1); 

// pyramid now contains 10 copies of the input 
for(int i = 1; i < 10; i++) { 
Window level(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height); 
FastBlur::apply(level, 0, sig, sig); 
sig *= 1.6; 

} 
// 'pyramid' now contains a Gaussian pyramid 

for(int i = 0; i < 9; i++) { 
Window thisLevel(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height); 
Window nextLevel(pyramid, i+1, 0, 0, 1, pyramid.width, pyramid.height); 
Subtract::apply(thisLevel, nextLevel); 
} 
// ‘pyramid’ now contains a Laplacian pyramid
// (except for the downsampling)



Take the difference between each 
layer and the next

float sig = 2;
Image pyramid = Upsample::apply(gray, 10, 1, 1); 

// pyramid now contains 10 copies of the input 
for(int i = 1; i < 10; i++) { 
Window level(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height); 
FastBlur::apply(level, 0, sig, sig); 
sig *= 1.6; 

} 
// 'pyramid' now contains a Gaussian pyramid 

for(int i = 0; i < 9; i++) { 
Window thisLevel(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height); 
Window nextLevel(pyramid, i+1, 0, 0, 1, pyramid.width, pyramid.height); 
Subtract::apply(thisLevel, nextLevel); 
} 
// ‘pyramid’ now contains a Laplacian pyramid 
// (except for the downsampling)



Review: Laplacian Pyramids

• Make the coarse layer by downsampling

Downsample



Review: Laplacian Pyramids

• Make the fine layer by upsampling the coarse layer, 
and taking the difference with the original

- =

Downsample Upsample



Review: Laplacian Pyramids

• Only store these

- =

Downsample Upsample

Coarse

Fine



Review: Laplacian Pyramids

• Reconstruct like so:

= +

Upsample



Laplacian Pyramids and Redundancy

• The coarse layer has redundancy - it’s blurry. 
We can store it at low resolution

• In linear algebra terms:

– coarse = Upsample(small)

– c = Us

– c is a linear combination of the columns of U

– How many linearly independent dimensions does 
c have?



Laplacian Pyramids and Redundancy

• The fine layer should be redundant too

• What constraint does the fine layer obey?

• How much of the fine layer should we actually 
need to store?



Laplacian Pyramids and Redundancy

• The fine layer should be redundant too

• What constraint does the fine layer obey?

• How much of the fine layer should we actually 
need to store?

– Intuitively, should be ¾n for n pixels



<MATH>



Laplacian Pyramids and Redundancy

• What constraint does the fine layer obey?
f = m - c

f = m - UDm

Kf = Km - KUDm

if KUD = K

then Kf = 0

K(UD-I) = 0

K is the null-space (on the left) of UD-I

May be empty (no constraints)

May have lots of constraints. Hard to tell.

m = input image
c = coarse
f = fine
U = upsampling
D = downsampling
K = some matrix



Laplacian Pyramids and Redundancy

• What if we say DU = I

– i.e. upsampling then downsampling does nothing

• Then (UD)2 = (UD)(UD) = U(DU)D

• f = m - UDm

• UDf = UDm - UDUDm = UDm - UDm = 0

• f is in the null-space of UD

• Downsampling then upsampling the fine layer 
gives you a black image.



DU = I

• How about nearest neighbor upsampling 
followed by rect downsampling?

• How about lanczos3 upsampling followed by 
lanczos3 downsampling?



DU = I

• How about nearest neighbor upsampling 
followed by nearest neighbor downsampling?
– Yes, but this is a crappy downsampling filter 

• How about lanczos3 upsampling followed by 
lanczos3 downsampling?
– No 

• This is hard, if we continue down this rabbit hole 
we arrive at...



Wavelets

• Yet another tool for:

– Image = coarse + fine

• So why should we care?

– They don’t increase the amount of data like 
pyramids (memory efficient)

– They’re simple to compute (time efficient)

– Like the Fourier transform, they’re orthogonal

– They have no redundancy



The Haar Wavelet

• Equivalent to nearest neighbor downsampling 
/ upsampling.

• Take each pair of values and replace it with:

– The sum / 2

– The difference / 2

• The sums form the coarse layer 

• The differences form the fine layer



The 1D Haar Transform

10 12 10 8 8 2 4 2 2 2

11 9 5 3 2 1 -1 -3 -1 0

Sums / 2 Differences / 2

Coarse Fine



Equivalently...

• The coarse layer is produced by convolving 
with [½ ½] (then subsampling)

• The fine layer is produced by convolving with 
[-½ ½] (then subsampling)

The “scaling” function

The “wavelet”



DU = I

• In this case, D = 



DU = I

• Note each row is orthogonal



DU = I

• So Let U = DT. Now DU = DDT = I

• What kind of upsampling is U?



Equivalently...

• The scaling function is the downsampling 
filter. It must be orthogonal to itself when 
shifted by 2n.

• The wavelet function parameterizes what the 
downsampling throws away 

– i.e. the null-space of UD (orthogonal to every row 
of UD)



The 1D Inverse Haar Transform

11 9 5 3 2

11 11 9 9 5 5 3 3 2 2

Upsample the Averages

Correct Using the Differences

1 -1 -3 -1 0

10 12 10 8 8 2 4 2 2 2



Recursive Haar Wavelet

• If you want a pyramid instead of a 2-level 
decomposition, just recurse and decompose 
the coarse layer again

– O(n log(n))



2D Haar Wavelet Transform

• 1D Haar transform each row

• 1D Haar transform each column

• If we’re doing a full recursive transform, we 
can:

– Do the full recursive transform in X, then the full 
recursive transform in Y (standard order)

– Do a single 2D Haar transform, then recurse on 
the coarse layer (non-standard order)



2D Haar Wavelet Transform

• (demo)



Problem with the Haar Wavelet

• Edges at a certain scale may exist in one of 
several levels, depending on their position.

10 10 10 10 10 0 0 0 0 0

10 10 5 0 0 0 0 -5 0 0

Averages (Coarse) Differences (Fine)

10 10 10 10 0 0 0 0 0 0

10 10 0 0 0 0 0 0 0 0

Averages (Coarse) Differences (Fine)



Better Wavelets

• Let’s try to pick a better downsampling filter 
(scaling function) so that we don’t miss edges 
like this

– Needs a wider support

– Still has to be orthogonal

• Tent: [ ¼ ½ ¼ ]?



Better Wavelets

• Lanczos3 downsampling filter: 
[0.02 0.00 -0.14 0.00 0.61 1.00 0.61 0.00 -0.14 0.00 0.02]

• Dot product = 0.1987 

– not orthogonal to itself shifted



Let’s design one that works

• Scaling function = [a b c d]

• Orthogonal to shifted copy of itself

– [0 0 a b c d].[a b c d 0 0] = ac + bd = 0

• If we want DDT = I, then should be unit 
length...

– [a b c d].[a b c d] = a2 + b2 + c2 + d2 = 1

• That’s two constraints...



more constraints

• Let’s make the wavelet function use the same 
constants but wiggle: [a -b c -d]

– Just like the Haar, but 4 wide

• Wavelet function should parameterize what 
the scaling function loses, so should be 
orthogonal (even when shifted)

• [a b c d].[a -b c -d] = a2 - b2 + c2 - d2 = 0

• [0 0 a b c d].[a -b c -d 0 0] = ac - bd = 0



Wavelet function should also be 
orthogonal...

• [0 0 a -b c -d].[a -b c -d 0 0] = ac + bd = 0

• Good, we already had this constraint, so we’re 
not overconstrained



The constraints

• ac + bd = 0

• a2 + b2 + c2 + d2 = 1

• a2 - b2 + c2 - d2 = 0

• ac - bd = 0

• Adding eqs 1 and 4 gives us a = 0 or c = 0, 
which we don’t want...

• In fact, this ends up with Haar as the only 
solution



Try again...

• Let’s reverse the wavelet function
– Wavelet function = [d -c b -a]

• ac + bd = 0
• a2 + b2 + c2 + d2 = 1
• [a b c d].[d -c b -a] = ad - bc + bd - ad = 0 

– trivially true

• [0 0 a b c d].[d -c b -a 0 0] = ab - ba = 0 
– also trivially true

• [a b c d 0 0].[0 0 d -c b -a] = cd - cd = 0
– Also trivially true



Now we can add 2 more constraints

• Considerably more freedom to design

• Let’s say the coarse image has to be the same 
brightness as the big image:

a + b + c + d = 1

• And the fine layer has to not be effected by 
local brightness (details only):

d - c + b - a = 0



Solve:

• ac + bd = 0

• a2 + b2 + c2 + d2 = 1

• a + b + c + d = 1

• d - c + b - a = 0

• Let’s ask the oracle...



No Solutions

• Ok, let’s relax U = DT

• It’s ok for the coarse layer to get brighter or 
darker, as long as DU = I still holds

• a2 + b2 + c2 + d2 = 1

• a + b + c + d = 1

• a + b + c + d > 0



Solve:

• ac + bd = 0

• a2 + b2 + c2 + d2 = 1

• a + b + c + d > 0

• d - c + b - a = 0

• We’re one constraint short...



Solve:

• ac + bd = 0

• a2 + b2 + c2 + d2 = 1

• a + b + c + d > 0

• d - c + b - a = 0

• We’re one constraint short...

• Let’s make the scaling function really smooth
– minimize:   a2 + (b-a)2 + (c-b)2 + (d-c)2 + d2

– or maximize: ab + bc + cd



Solution!

• a = 0.482963

• b = 0.836516

• c = 0.224144

• d = -0.12941



Ingrid Daubechies Solved this Exactly

• a = (1 + sqrt(3)) / (4 sqrt(2))

• b = (3 + sqrt(3)) / (4 sqrt(2))

• c = (3 - sqrt(3)) / (4 sqrt(2))

• d = (1 - sqrt(3)) / (4 sqrt(2))

• Scaling function = [a b c d]

• Wavelet function = [d -c b -a]

• The resulting wavelet is better than Haar, 
because the downsampling filter is smoother.



</MATH>



Applications

• Compression

• Denoising



Compression

• Idea: throw away small wavelet terms

• Algorithm:

– Take the wavelet transform

– Store only values with absolute value greater than 
some threshold

– To recontruct image, do inverse wavelet transform 
assuming the missing values are zero



Compression

• ImageStack -load pic.jpg -daubechies 

• -eval ‚abs(val) < 0.1 ? 0 : val‛ 

• -inversedaubechies -display



Input:



Daubechies Transform:



Dropping coefficients below 0.01

30% less data



Dropping coefficients below 0.05

65% less data



Dropping coefficients below 0.1

82% less data



Dropping coefficients below 0.2

94% less data



Daubechies vs Haar at 65% less data



Daubechies vs Reducing Resolution



Denoising

• Similar Idea: Wavelet Shrinkage

– Take wavelet coefficients and move them towards 
zero

• E.g. 

– 0.3 -> 0.25

– -0.2 -> -0.15

– 0.05 -> 0

– 0.02 -> 0



Input vs Output



Wavelet Shrinkage vs Bilateral



- Wavelet shrinkage much faster
- Denoised at multiple scales at once



Lifting Schemes

• Turns out there’s a better way to derive 
orthogonal wavelet bases

• We’ve done enough math for today

• Next Time



Edge-Avoiding Wavelets

• Laplacian Pyramid : Wavelets

• as Bilateral Pyramid : Edge-Avoiding Wavelets 



Projects

• Rest of Quarter:

– Project proposal, due 1 week after due date of 
assn3

– 1 Paper presentation on your chosen paper (20 
minutes of slides, 15 minutes of class discussion)

– Final project demo (after thanksgiving break)

– Final project code due at end of quarter.

– Intent: rest of quarter is 50-75% of the workload 
of start of quarter.



Project Ideas:

• http://cs448f.stanford.edu/


