CS448f: Image Processing For Photography and Vision

Wavelets and Compression

- Image and Windows are pointer classes
- What's wrong with this code?

```
Image sharp = Load::apply("foo.jpg");
Image blurry = foo;
FastBlur::apply(blurry, 0, 5, 5);
Subtract::apply(sharp, blurry);
```

- Image and Windows are pointer classes
- What's wrong with this code?

Image sharp = Load::apply("foo.jpg"); Image blurry = foo.copy(); FastBlur::apply(blurry, 0, 5, 5); Subtract::apply(sharp, blurry);

- Images own memory (via reference counting), Windows do not.
- What's wrong with this code?

```
class Foo {
  public:
    Foo(Window im) {
        Image temp(im);
        ... do some processing on temp ...
        patch = temp;
    };
    Window patch;
};
```

- Images own memory (via reference counting), Windows do not.
- What's wrong with this code?

```
class Foo {
  public:
    Foo(Window im) {
        Image temp(im);
        ... do some processing on temp ...
        patch = temp;
    };
    Image patch;
};
```

Using Windows Wisely

```
float sig = 2;
Image pyramid = Upsample::apply(gray, 10, 1, 1);
// pyramid now contains 10 copies of the input
for(int i = 1; i < 10; i++) {</pre>
  Window level(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height);
  FastBlur::apply(level, 0, sig, sig);
 sig *= 1.6;
}
// 'pyramid' now contains a Gaussian pyramid
for(int i = 0; i < 9; i++) {</pre>
Window thisLevel(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height);
Window nextLevel(pyramid, i+1, 0, 0, 1, pyramid.width, pyramid.height);
Subtract::apply(thisLevel, nextLevel);
}
// 'pyramid' now contains a Laplacian pyramid
// (except for the downsampling)
```

The only time memory gets allocated

```
float sig = 2;
Image pyramid = Upsample::apply(gray, 10, 1, 1);
```

```
// pyramid now contains 10 copies of the input
for(int i = 1; i < 10; i++) {
  Window level(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height);
  FastBlur::apply(level, 0, sig, sig);
  sig *= 1.6;
}
// 'pyramid' now contains a Gaussian pyramid
for(int i = 0; i < 9; i++) {
  Window thisLevel(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height);
  Window thisLevel(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height);
}
```

```
Window nextLevel(pyramid, i+1, 0, 0, 1, pyramid.width, pyramid.height);
Subtract::apply(thisLevel, nextLevel);
```

Select each layer and blur it

```
float sig = 2;
Image pyramid = Upsample::apply(gray, 10, 1, 1);
// pyramid now contains 10 copies of the input
for(int i = 1; i < 10; i++) {</pre>
 Window level(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height);
  FastBlur::apply(level, 0, sig, sig);
  sig *= 1.6;
}
// 'pyramid' now contains a Gaussian pyramid
for(int i = 0; i < 9; i++) {</pre>
Window thisLevel(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height);
Window nextLevel(pyramid, i+1, 0, 0, 1, pyramid.width, pyramid.height);
Subtract::apply(thisLevel, nextLevel);
}
// 'pyramid' now contains a Laplacian pyramid
// (except for the downsampling)
```

Take the difference between each layer and the next

```
float sig = 2;
Image pyramid = Upsample::apply(gray, 10, 1, 1);
// pyramid now contains 10 copies of the input
for(int i = 1; i < 10; i++) {</pre>
  Window level(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height);
  FastBlur::apply(level, 0, sig, sig);
  sig *= 1.6;
}
// 'pyramid' now contains a Gaussian pyramid
for(int i = 0; i < 9; i++) {</pre>
Window thisLevel(pyramid, i, 0, 0, 1, pyramid.width, pyramid.height);
Window nextLevel(pyramid, i+1, 0, 0, 1, pyramid.width, pyramid.height);
Subtract::apply(thisLevel, nextLevel);
// 'pyramid' now contains a Laplacian pyramid
// (except for the downsampling)
```

• Make the coarse layer by downsampling

• Make the fine layer by upsampling the coarse layer, and taking the difference with the original

• Reconstruct like so:

- The coarse layer has redundancy it's blurry.
 We can store it at low resolution
- In linear algebra terms:
 - coarse = Upsample(small)
 - -c = Us
 - c is a linear combination of the columns of U
 - How many linearly independent dimensions does c have?

- The fine layer should be redundant too
- What constraint does the fine layer obey?
- How much of the fine layer should we actually need to store?

- The fine layer should be redundant too
- What constraint does the fine layer obey?
- How much of the fine layer should we actually need to store?
 - Intuitively, should be ³/₄n for n pixels

- What constraint does the fine layer obey?
 - f = m cf = m - UDmKf = Km - KUDmif KUD = Kthen Kf = 0K(UD-I) = 0K is the null-space (on the left) of UD-I May be empty (no constraints) May have lots of constraints. Hard to tell.

m = input image
c = coarse
f = fine
U = upsampling
D = downsampling
K = some matrix

- What if we say DU = I
 - i.e. upsampling then downsampling does nothing
- Then $(UD)^2 = (UD)(UD) = U(DU)D$
- f = m UDm
- UDf = UDm UDUDm = UDm UDm = 0
- f is in the null-space of UD
- Downsampling then upsampling the fine layer gives you a black image.

 How about nearest neighbor upsampling followed by rect downsampling?

 How about lanczos3 upsampling followed by lanczos3 downsampling?

- How about nearest neighbor upsampling followed by nearest neighbor downsampling?
 – Yes, but this is a crappy downsampling filter ⁽³⁾
- How about lanczos3 upsampling followed by lanczos3 downsampling?
 No 🛞
- This is hard, if we continue down this rabbit hole we arrive at...

Wavelets

• Yet another tool for:

– Image = coarse + fine

- So why should we care?
 - They don't increase the amount of data like pyramids (memory efficient)
 - They're simple to compute (time efficient)
 - Like the Fourier transform, they're orthogonal
 - They have no redundancy

The Haar Wavelet

- Equivalent to nearest neighbor downsampling / upsampling.
- Take each pair of values and replace it with:
 - The sum / 2
 - The difference / 2
- The sums form the coarse layer
- The differences form the fine layer

The 1D Haar Transform

Equivalently...

 The coarse layer is produced by convolving with [½ ½] (then subsampling)

The "scaling" function

 The fine layer is produced by convolving with [-½ ½] (then subsampling)

The "wavelet"

• In this case, D =

• Note each row is orthogonal

- So Let $U = D^T$. Now $DU = DD^T = I$
- What kind of upsampling is U?

Equivalently...

 The scaling function is the downsampling filter. It must be orthogonal to itself when shifted by 2n.

 The wavelet function parameterizes what the downsampling throws away

– i.e. the null-space of UD (orthogonal to every row of UD)

The 1D Inverse Haar Transform

Recursive Haar Wavelet

- If you want a pyramid instead of a 2-level decomposition, just recurse and decompose the coarse layer again
 - $-O(n \log(n))$

2D Haar Wavelet Transform

- 1D Haar transform each row
- 1D Haar transform each column
- If we're doing a full recursive transform, we can:
 - Do the full recursive transform in X, then the full recursive transform in Y (standard order)
 - Do a single 2D Haar transform, then recurse on the coarse layer (non-standard order)

2D Haar Wavelet Transform

• (demo)

Problem with the Haar Wavelet

• Edges at a certain scale may exist in one of several levels, depending on their position.

10	10	10	10	10	0	0	0	0	0	
10	10	5	0	0	0	0	-5	0	0	
Averages (Coarse)						Differences (Fine)				
10	10	10	10	0	0	0	0	0	0	
10	10	0	0	0	0	0	0	0	0	
Averages (Coarse)						Differences (Fine)				

Better Wavelets

- Let's try to pick a better downsampling filter (scaling function) so that we don't miss edges like this
 - Needs a wider support
 - Still has to be orthogonal
- Tent: [1/4 1/2 1/4]?

Better Wavelets

- Lanczos3 downsampling filter: [0.02 0.00 -0.14 0.00 0.61 1.00 0.61 0.00 -0.14 0.00 0.02]
- Dot product = 0.1987

not orthogonal to itself shifted

Let's design one that works

- Scaling function = [a b c d]
- Orthogonal to shifted copy of itself
 [0 0 a b c d].[a b c d 0 0] = ac + bd = 0
- If we want DD^T = I, then should be unit length...

 $- [a b c d].[a b c d] = a^{2} + b^{2} + c^{2} + d^{2} = 1$

• That's two constraints...

more constraints

 Let's make the wavelet function use the same constants but wiggle: [a -b c -d]

Just like the Haar, but 4 wide

- Wavelet function should parameterize what the scaling function loses, so should be orthogonal (even when shifted)
- $[a b c d].[a b c d] = a^2 b^2 + c^2 d^2 = 0$
- [0 0 a b c d].[a -b c -d 0 0] = ac bd = 0

Wavelet function should also be orthogonal...

- [0 0 a -b c -d].[a -b c -d 0 0] = ac + bd = 0
- Good, we already had this constraint, so we're not overconstrained

The constraints

- ac + bd = 0
- $a^2 + b^2 + c^2 + d^2 = 1$
- $a^2 b^2 + c^2 d^2 = 0$
- ac bd = 0
- Adding eqs 1 and 4 gives us a = 0 or c = 0, which we don't want...
- In fact, this ends up with Haar as the only solution

Try again...

- Let's reverse the wavelet function
 Wavelet function = [d -c b -a]
- ac + bd = 0
- $a^2 + b^2 + c^2 + d^2 = 1$
- [a b c d].[d -c b -a] = ad bc + bd ad = 0
 trivially true
- [0 0 a b c d].[d -c b -a 0 0] = ab ba = 0
 also trivially true
- [a b c d 0 0].[0 0 d -c b -a] = cd cd = 0
 Also trivially true

Now we can add 2 more constraints

- Considerably more freedom to design
- Let's say the coarse image has to be the same brightness as the big image:

a + b + c + d = 1

 And the fine layer has to not be effected by local brightness (details only):

d - c + b - a = 0

Solve:

- ac + bd = 0
- $a^2 + b^2 + c^2 + d^2 = 1$
- a + b + c + d = 1
- d c + b a = 0
- Let's ask the oracle...

No Solutions

- Ok, let's relax $U = D^T$
- It's ok for the coarse layer to get brighter or darker, as long as DU = I still holds
- $a^2 + b^2 + c^2 + d^2 = 1$
- a + b + c + d = 1
- a + b + c + d > 0

Solve:

- ac + bd = 0
- $a^2 + b^2 + c^2 + d^2 = 1$
- a + b + c + d > 0
- d c + b a = 0
- We're one constraint short...

Solve:

- ac + bd = 0
- $a^2 + b^2 + c^2 + d^2 = 1$
- a + b + c + d > 0
- d c + b a = 0
- We're one constraint short...
- Let's make the scaling function really smooth
 minimize: a² + (b-a)² + (c-b)² + (d-c)² + d²

– or maximize: ab + bc + cd

Solution!

- a = 0.482963
- b = 0.836516
- c = 0.224144
- d = -0.12941

Ingrid Daubechies Solved this Exactly

- a = (1 + sqrt(3)) / (4 sqrt(2))
- b = (3 + sqrt(3)) / (4 sqrt(2))
- c = (3 sqrt(3)) / (4 sqrt(2))
- d = (1 sqrt(3)) / (4 sqrt(2))
- Scaling function = [a b c d]
- Wavelet function = [d -c b -a]
- The resulting wavelet is better than Haar, because the downsampling filter is smoother.

</ d>

Applications

- Compression
- Denoising

Compression

- Idea: throw away small wavelet terms
- Algorithm:
 - Take the wavelet transform
 - Store only values with absolute value greater than some threshold
 - To recontruct image, do inverse wavelet transform assuming the missing values are zero

Compression

- ImageStack -load pic.jpg -daubechies
- -eval "abs(val) < 0.1 ? 0 : val"
- -inversedaubechies -display

Input:

Daubechies Transform:

Daubechies vs Haar at 65% less data

Daubechies vs Reducing Resolution

Denoising

- Similar Idea: Wavelet Shrinkage
 - Take wavelet coefficients and move them towards zero
- E.g.
 - 0.3 -> 0.25
 - --0.2 -> -0.15
 - 0.05 -> 0
 - 0.02 -> 0

Input vs Output

Wavelet Shrinkage vs Bilateral

Wavelet shrinkage much faster Denoised at multiple scales at once

Lifting Schemes

- Turns out there's a better way to derive orthogonal wavelet bases
- We've done enough math for today
- Next Time

Edge-Avoiding Wavelets

- Laplacian Pyramid : Wavelets
- as Bilateral Pyramid : Edge-Avoiding Wavelets

Projects

- Rest of Quarter:
 - Project proposal, due 1 week after due date of assn3
 - 1 Paper presentation on your chosen paper (20 minutes of slides, 15 minutes of class discussion)
 - Final project demo (after thanksgiving break)
 - Final project code due at end of quarter.
 - Intent: rest of quarter is 50-75% of the workload of start of quarter.

Project Ideas:

http://cs448f.stanford.edu/